A Quote or Two from Hoeflmayr (1963): “Inhalation Therapy Using Bacteriophages in Therapy-Resistant Infections”

Stephen T. Abedon

Department of Microbiology – The Ohio State University

phage.org – phage-therapy.org – biologyaspoetry.org


 

I just came across this “report”, which can be found here:

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U-2&docGetTRDoc.pdf&AD=AD0837021

This dates from 1963, I believe as a translation, and the full citation is “Inhalation Therapy Using Bacteriophages in Therapy-Resistant Infections”. Fortschritte der Biologischen Aerosol-Forschung-Jahren 1957-1961 (Progress of the Biological Aerosol Research-Years 1957-1961), pp. 403-409. See under “Further reading” for what presumably is the original and/or complete citation.

At any rate, this paper/chapter/publication/translation/report has some interesting passages.

In view of the growing resistance against antibiotics, it is vitally important that we try to find ways to counteract this development. … Farsighted clinicians warned us as long as 10 years ago, when we were still students, that we should not hastily treat any little infection with penicillin.
If we should discover any-new possibilities for treating infections, then we should look at these possibilities only from the angle that such a therapy would have to preclude the formation of resistance as much as possible, therapy with bacteriophages fills the requirement. The fact that this therapy has so far met with skepticism is due to the results which, until a few years ago, did not ome up to expectations
[Schaefer, W., “Contribution on Epidemic Control” Vol. 3, Hippocrates, Stuttgart, 1948]. If we try to track down the reason for the failure of the earlier bacteriophage therapy, we will find that this was mostly due to the biological properties of the phages.
Now it is important to know that the bacteriophage has high specificity. Therefore, therapy can be effective
only If the administered phage encounters its homologous bacterium.
The disadvantage of our earlier phage preparations was to be found not only in the inadequate breeding methods but above all in the fact that only about 1-2 phage strains were available. If we consider the large number of pathogenic bacteria strains, which play a role even in a very simple infection or which at least at times might play a role, then we would have to set up two requirements. First of all, in order to have a wide range of effectiveness, such a therapeutic substance would have to contain a large number of various phage strains. Second, it is necessary that phages which would come into consideration for therapy should have sufficient virulence with regard to pathogenic viruses.
We used the preparation (Diriphagen ® Dr. Heinz Haury Chemical Plant, Munich) because we believed that this preparation met the requirements we just set up. According to Information received, this reparation contains 180-200 different phage strains and thus has a broad spectrum of effectiveness. In addition, it also contains so-called aimed antimicrobics which act against those bacteria that reveal primary phage resistance. We might note here that both the phage components and the added microbics in every ampule are standardized and meet the requirements for biological standardisation as regards phage effect [Penso, G., and Ortali, V., Arch. belges Med. Soc., 1, 1959]. If we mention the two therapeutic components, that is the bacteriphages and aimed (directed) antimicrobics, we are really not fully describing the effects mechanism as such. We have a third factor here. What we are dealing with here is the stimulation of the inherent defenses of the body which are bound to be aroused and which are based on the following: In breeding phages and antimicrobics, the pathogenic microbes used for this purpose give rise to lysates. But these lysates are not eliminated; instead they are also fed into the body. They act like antigens and lead to the formation of antibodies which in turn are specifically directed against the bacteria to which lyntes were added [Glauser, H. A., Med. achr., 13, 420, 1959.]. This reaction requires a latency period of about 8-10 days. The value of this antibody formation is hard to estimate in the individual case. We can get some specific figures on this only if we determine the phagocytosis capability; but this must be done in the clinic. Any new therapy is very often impaired by the fact that we do not employ it until other, more familiar measures have failed. We must admlt that we did not use Deriphagen until we had some patients in whom other preparations had not produced success. This is further by reports from other authors who achieved surprisingly good results with this preparation [Cevey, M., Schweiz. Z. Tuberk. (Swiss Tuberculosis Joural),
15, 34, 1958; Corbelli, G., Bologna Med., 6, 57, 1959; Delacoste, P., Rev. suisse Med., August 1959; Schaefer, W., “Contribution on Epidemic Control” Vol. 3, Hippoprates, Stuttgart, 1948].

Figure 1 shows the result of our treatment. The first column shows the total number of all patients treated; then we have the number of patients cured which abounted to 55.1%; then we cow to those who showed substantial improvement and on the right we have those patients who did not improve as a result of therapy [34.8%].

The author notes, however, that there is a discrepancy between microbiological and clinical results. That is, patients apparently reported a return to healthfulness but this did not coincide with elimination of pathogen, which the author seems to suggest is a consequence of phage- resistant forms not being pathogenic.

The text in the PDF then essentially fades away, though the main text of the paper continues on for two more pages!

Further reading:

Hoeflmayr, J. (1962). Inhalationstherapie mit Bakteriophagen bei therapieresistenten Infektionen [Inhalation Therapy with Bacteriophages for Treatment-Resistant Infections]. Fortschritte der biologischen Aerosol-Forschung in den Jahren 1957–1961 [Advances in Biological Aerosols Research in the Years 1957–1961].  403-409. 1962. (I believe this is the original reference)

Abedon, S. T., Kuhl, S., Blasdel, R., Kutter, E. M. (2011). Phage Treatment of Human Infections. Bacteriophage 1(2): 66-85. [PubMed link] (this article provides further historical context on European use of phage therapy, though note that description of a German tradition in that article is completely lacking and so far as I am aware was unknown to the authors at the time of its writing)

Bacteriophages, Spatial Structure, and the Joys and Limitations of a Swiss Pass

Stephen T. Abedon

Department of Microbiology – The Ohio State University

phage.org – phage-therapy.org – biologyaspoetry.org

(This essay was written while touring Switzerland by train, July, 2014)


 

Travel can be joyous but also can involve a lot of work. The basic premise of travel is movement, whether specifically from one destination to another or instead something more random. In either case it takes time for you to move from that one place to another. Even the exploration of a smallish country therefore can take enormous amounts of time, since each of numerous legs of your journey will take some amount of time to traverse. You can purchase a Swiss Pass, and explore much of Switzerland over days and even weeks. You’ll see a lot, but you certainly will see far from everything. These temporal delays that are manifest as you travel are one of things that makes traveling difficult, but at the same time this relative slowness can be what makes a journey worthwhile. If you flittered from place to place at the speed of light, never pausing, you would touch upon much more, but your experience would be far different. Indeed, there are qualitative differences between your experiences as you fly, drive, take a train, ride a motorcycle, ride a bike, walk, or indeed not move at all.

Spatial structure is a property of environments in which delays in movement exist. If you can instantaneously and randomly be anywhere, then there is no spatial structure. In microbiology, spatial structure is seen especially under circumstances that do not substantially involve turbulent flow. When you shake a broth-filled flask, one of the consequences of that action is to reduce spatial structure. In terms of interactions between predators and prey, of bacteriophages and bacteria, the result is that any one individual may interact with any other individual with equivalent probability. If you replace any collision between phages and bacteria with the special kind of interaction that is sex, then you have random mating. If you replace any collision with the special kind of interaction that is phage infection of bacteria, then you have random infection. Either case is implicitly a consequence of a lack of spatial structure in the environment.

Spatial structure generally is what happens within environments almost no matter what. You can strive to remove spatial structure, such as via the shaking or stirring of broth, but absent such measures, or indeed if volumes are large enough and mixing slow enough, then some spatial structure nonetheless will be retained. A static microcosm – where the mixing of broth is reduced essentially to zero and therefore where movement is dominated by either motility or diffusion – thus can represent a spatially structured environment. More obvious is the spatial structure that occurs when movement is reduced even further, as is the case with the addition to environments of various thickening agents such as agar.

In phage biology the classic laboratory-observed consequence of spatial structure is the formation of phage plaques, which are clearings within otherwise turbid bacterial cultures, ones that have been spread or poured onto agar plates. The formation of a plaque requires three processes: phage population growth, phage-mediated reduction of bacterial densities, and, crucially, limitations in phage as well as bacterial movement.  Generally a plaque begins with a single plaque forming unit (PFU) which consists of an infective center and in turn can be either an individual phage virion, a clump of phage virions, a phage-infected bacterium, or a clump of bacteria at least one of which is phage infected. This infective center serves as a point source for the outward but nonetheless slow diffusion of phage virions away from their origin. The movement is outward only because the random process of diffusion tends to result in a broadening of the “cloud” of diffusing particles. Because of limitations on the rate of this movement, however, the cloud remains relatively small: the confluent lysis of an entire plate via the growth of a single plaque generally does not occur.

The phage is you. You can start a family and outfit each member of your family with a Swiss Pass. But unless your explorations of the amazing beauty that is Switzerland occurs over extremely long periods, then your and your family’s potential to see all of Switzerland will be relatively limited. This is less true, however, if your family is very large, so large that at least one family member is present to explore each place that may be explored. In this case complete exploration of a discrete area may be achieved. Your ability to explore broader areas nevertheless will be limited at least in part by how long it takes you or your family to get there.

Further reading:

Abedon, S. T., Bartom, E. (2013). Plaques. Brenner’s Encyclopedia of Genetics. Maloy, S., Hughes, K. (eds). Academic Press, pp. 357-357.

Abedon, S. T., Yin, J. (2009). Bacteriophage Plaques: Theory and Analysis. Methods in Molecular Biology 501:161-174. [PubMed link]

Abedon, S. T., Yin, J. (2008). Impact of Spatial Structure on Phage Population Growth. In: Bacteriophage Ecology, Abedon, S. T. (ed), Cambridge University Press, Cambridge, pp. 94-113.

For videos of my explorations of Switzerland, as well as other aspects of my existence, see youtube.com/channel/UCf0uLeBfCToHT3eAoYFmcNA.